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Abstract. Network motifs, patterns of local interconnections with po-
tential functional properties, are important for the analysis of biological
networks. To analyse motifs in networks the first step is finding patterns
of interest. This paper presents 1) three different concepts for the de-
termination of pattern frequency and 2) a flexible algorithm to compute
these frequencies. The different concepts of pattern frequency depend on
the reuse of network elements. The presented algorithm finds patterns
with highest frequency and can be used to determine pattern frequency
in directed graphs under consideration of these concepts. The utility of
this method is demonstrated by applying it to real-world data.

1 Introduction

Biological processes form large and complex networks. Network analysis methods
may help to uncover important properties of these networks and therefore may
assist biologists in understanding processes in organisms. Network motifs can
be seen as the basic building blocks of complex networks [7] and are important
for the functional analysis of biological networks [8, 11]. There is no commonly
used definition of a network motif. Some authors use this term to represent a
set of related networks [8], for others it is simply a single small network [11].
Often motifs are described as patterns of local interconnections which occur in
networks at numbers significantly higher than those in randomised networks [7,
11]. However, as it has been already noted in [7], motifs that are functionally
important but not statistically significant could exist and would be missed by
this approach.

The term motif is not precisely defined [7, 8, 11], but often refers to some func-
tional properties of a (set of related) substructure(s) within a network. Usually
the functional properties of substructures cannot be derived from their frequency
alone, their frequency can only suggest potential functional properties. To dis-
tinguish between functional motifs and the substructures where the function is
currently unknown we use the term pattern for such substructures of a network.
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(a) GT (b) GP

Fig. 1. (a) A graph with a randomly selected subgraph (highlighted with thick lines).
This subgraph is isomorphic to the graph GP shown in (b). The highlighted subgraph
in GT is also a match of GP in GT .

A pattern itself is defined as a single network. We allow the user to investigate
all possible patterns in the network and do not restrict our search to statistically
significant substructures. This approach is similar to mining frequent patterns
in networks as described in [2].

For the problem of pattern finding in collections of independent networks
several algorithms have been presented [2, 3, 12]. However, there are only a few
approaches to find patterns in large connected networks [5, 10]. This paper deals
with two topics: 1) we introduce three different concepts for the determination of
pattern frequency (the number of occurrences of a pattern in the target network)
and 2) we present a flexible algorithm to find frequent patterns. This algorithm
is based on [5]. It is extended to deal with the different concepts for frequency
counting and to find patterns in directed graphs.

The remainder of the paper is structured as follows: in Sect. 2 we define the
graph model on which we operate and describe the pattern specification used.
In the following Sect. 3 we address the problem of determination of pattern
frequency and present three different concepts. Sect. 4 introduces the frequent
pattern finder algorithm and in Sect. 5 the details of the algorithm are illustrated.
To demonstrate the utility of our method it is applied to typical real-world data
in Sect. 6.

2 Definitions

A directed graph G = (V,E) consists of a finite set V of vertices and a finite
set E ⊆ V × V of edges. An edge (u, v) ∈ E goes from vertex u, the source, to
another vertex v, the target. The vertices u and v are said to be incident with
the edge e and adjacent to each other. A subgraph of the graph G = (V,E) is a
graph Gs = (Vs, Es) where Vs ⊆ V and Es ⊆ (Vs × Vs) ∩ E. For a graph G and
a subgraph Gs an edge e = (u, v) ∈ E is called incident to Gs if exactly one of
the vertices u, v is element of the set Vs.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a
one-to-one correspondence between their vertices, and there is an edge directed



from one vertex to another vertex of one graph if and only if there is an edge
with the same direction between the corresponding vertices in the other graph.
The in-degree of a vertex is defined as the number of edges coming into the
vertex, the out-degree as the number of edges going out of it. The degree of a
vertex is the number of all edges connected to it.

Let GT be a graph representing the biological network to be analysed (the
target network) and GP be a graph representing the pattern of interest. A match
GM is a subgraph of GT which is isomorphic to GP (see Fig. 1). The pattern
size is defined in this paper as the number of edges that the pattern comprises.

3 Pattern Frequency

3.1 Different concepts for determination of pattern frequency

The frequency of a pattern in a target graph is the maximum number of dif-
ferent matches of this pattern. There are different concepts for determining the
frequency of a pattern depending on which elements of the graph can be shared
by two matches. Tab. 1 lists the four possibilities, from which only three can be
reasonably applied.

Frequency concept F1 counts every match of this pattern. This concept gives
a complete overview of all possible occurrences of a pattern even if elements
of the target graph have to be used several times. It does not exclude possible
matches (as the other concepts often do) and therefore shows the full ‘potential‘
of the target graph with regard to the pattern.

Frequency concepts F2 and F3 restrict the reuse of graph elements shared
by different matches of a pattern. If different matches share graph elements
not allowed by the particular concept, not all matches can be counted for the
frequency. In this case the maximum set of non-overlapping matches selected
for frequency counting has to be calculated. This is known as the maximum
independent set problem, and we approximate the exact result using a heuristic
for performance reasons. Concept F2 is a common concept [10, 5] and only allows

Graph elements shared
by different matches Values for the example in Fig. 2

Concept Vertices Edges frequency selected matches

F1 yes yes 5 {M1, M2, M3, M4, M5}
F2 yes no 2 {M1, M4} or {M3, M4}
F∗ no yes − −
F3 no no 1 one of {M1, M2, M3, M4, M5}

Table 1. Concepts for sharing of graph elements by the matches counted for the
frequency of a pattern. Note that concept F∗ is not applicable, since edges always
connect vertices. In concept F1 where all elements can be shared, separate matches
have to differ at least by one element. The concepts are applied to the graph and
pattern in Fig. 2 and the results are shown at the right side of the table.
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Fig. 2. An example graph (a), a pattern (b) and all different matches of the pattern (c,
M1 −M5). The vertices of the graph and of the matches are numbered consecutively
for identification purposes.

edge disjoint matches. Concept F3 is even more restrictive concerning sharing
graph elements of the target graph for different matches. All matches have to
be vertex and edge disjoint. The advantage of this concept is that the matches
in the target can be seen as non-overlapping clusters. This clustering of the
target graph allows specific analysis and navigation methods such as folding and
unfolding of clusters.

The results of the application for the different concepts are illustrated by
the example in Fig. 2. Applying concept F1, the frequency is five, for F2 the
frequency is two counting the matches M1 and M4 or, alternatively M3 and M4.
By applying concept F3 only one match out of the five can be selected.

An important property, which allows reduction of the search space, holds for
concepts F2 and F3. For them the frequency of descending patterns (i.e. patterns
on paths of the traversal tree) is monotonically decreasing with increasing size
of the patterns, allowing a pruning of the search space [5].

3.2 Downward closure property of the frequency

An important feature for the presented search algorithm is the downward closure
property of the frequency of the patterns, which is described in [5]. The search
algorithm traverses the patterns like a tree (see Sect. 4.2), where the downward
closure property ensures that the frequency of descending patterns (i.e. patterns
on paths of the traversal tree) is monotonically decreasing with increasing size
of the pattern.

Based on the downward closure property, the search space of patterns can be
reduced by pruning of infrequent patterns in the traversal tree. Intermediately
discovered patterns which fall below a particular frequency threshold can be dis-
carded together with all patterns descending from it, since no frequent patterns
can be found in this branch of the traversal tree. The downward closure property
holds for frequency concepts F2 and F3, but not for F1. This is illustrated in
Fig. 3 showing (a) a graph of size 9 and two patterns of (b) size 3 and (c) size 4.
The pattern in (c) is a one-edge extension of the pattern in (b). The frequency
of the pattern in (b) within the target graph in (a) is one for the three concepts.
For the pattern in (c) the number of matches within the target graph in (a) is
one for concept F2 and F3 and six for concept F1. In the latter case the number
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Fig. 3. A graph of size 9 (a) and two patterns of size 3 (b) and size 4 (c) illustrating
that frequency concept F1 is not downward closed.

of matches increases for a pattern which is an extension of another pattern and
hence is not downward closed.

4 Frequent pattern finder algorithm

4.1 Overview

In its basic form, the frequent pattern finder (FPF) algorithm searches for pat-
terns of a given size (the target size) which occur with maximum frequency under
a given frequency concept. As the number of different patterns grows very fast
with increasing size of the patterns, a systematic search of all patterns of a par-
ticular size can become very time consuming even for medium-size patterns. In
order to avoid the generation of a high number of patterns FPF uses a method
that builds a tree of only the patterns which are supported by the target graph
and traverses this tree such that only promising branches are examined. To build
this pattern tree, a particular pattern of size i is assigned to a parent pattern of
size i− 1, the generating parent, from which it can be exclusively derived. Fig. 4
illustrates the concept.

For the frequency concepts F2 and F3 this pattern tree together with the
downward closure property allows the pruning of the tree. As soon as the fre-
quency of a pattern of intermediate size falls below the frequency of a pattern
of target size discovered so far this branch of the tree can be discarded since
the frequency of descending patterns is monotonically decreasing. If a (nearly)
maximum frequent pattern of target size is discovered early in the search pro-
cess, the frequency threshold for discarding intermediate size patterns becomes
relatively high very early. Consequently, the number of patterns to be searched is
reduced significantly. To find a frequent pattern early, the FPF algorithm selects
the pattern with the highest frequency from the set of intermediate size patterns
for expansion.

In Sect. 4.2 the frequent pattern finder algorithm is described in detail and
in Sect. 4.3 points for further enhancements are outlined.
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Fig. 4. The pattern tree. Note that there are more patterns of size 3 indicated by
dashed lines.

4.2 Pattern traversal

In general the patterns of intermediate size are extended as long as they reach
the target size and then are logged as a result pattern or are discarded if they
are infrequent. The search process terminates if no patterns of intermediate size
are left for extension.

The search starts with the smallest pattern p of size 1 which consists of one
edge and two vertices. All matchesMp1 of this pattern are generated using every
edge once. On the basis of the matches m ∈Mp of a pattern p of size i all one-
edge extension patterns p′ of size i + 1, which have p as generating parent, are
created. This is done in the following way: for every match m all incident edges
within the graph are identified and are used successively to create a new match
m′ of size i + 1. The resulting extension pattern p′ of m′ is discarded if p is not
the generating parent. If it is a valid extension, it is checked whether this pattern
was discovered before using a canonical labelling for isomorphism testing, and it
is recorded as an extension pattern if not already present. The matches Mp′ for
all newly created extension patterns are identified during the process of pattern
generation. These newly created extension matches are recorded and are assigned
to the matches of the corresponding extension pattern. The complete algorithm
is shown in Alg. 1 and 2.

4.3 Enhancements of the search process

The presented algorithm searches for patterns of a given size with maximum
frequency. It is straightforward to extend the algorithm, with additional features
controlling the search or process tasks in parallel, to achieve better performance
on multiprocessor machines:



Algorithm 1: Frequent pattern finder
Data : Graph G, target pattern size t, frequency concept F
Result : Set R of patterns of size t with maximum frequency

R←− ∅ ; fmax ←− 0
/* P: temporary data structure for patterns of intermediate size */

P ←− start pattern p1 of size 1
Mp1 ←− all matches of p1 in G
while P 6= ∅ do
Pmax ←− select all patterns from P with maximum size
p←− select pattern with maximum frequency from Pmax

E = ExtensionLoop(G, p, Mp)

foreach pattern p ∈ E do
if F = F1 then

f ←− size(Mp)

else
f ←− MaximumIndependentSet (F ,Mp) (see Sect. 5.4)

end
if size(p) = t then

if f = fmax then
R←− R∪ {p}

else
if f > fmax then
R←− {p} ; fmax ←− f

end
end

else
if F = F1 or f ≥ fmax then
P ←− P ∪ {p}

end
end

end
end

– Search for a set of patterns with highest frequency
Instead of searching only for the pattern with maximum frequency, the set of
n frequent patterns with highest frequency to be recorded can be specified.

– Specification of a threshold for minimum frequency
If all patterns with a frequency above a certain threshold are of interest,
this threshold can be used as a global value for the minimum frequency for
discarding patterns. All patterns with a frequency above this threshold are
recorded.

– Parallel processing of the pattern extension
The patterns are extended independently from each other within the Exten-
sion Loop of the algorithm (see Alg. 2), thus allowing parallel execution of
extension loops.

– Parallel processing of different branches of the search tree



Algorithm 2: Extension Loop
Data : Graph G, pattern p of size i, set of all matches Mp

Result : Set of extension patterns E of size i + 1 together with all matches

E ←− ∅
foreach match m ∈Mp do

foreach incident edge e of m do
m′ ←− m ∪ e
p′ ←− corresponding pattern of m′

if p is generating parent of p′ then
E ←− E ∪ {p′} ; Mp′ ←−Mp′ ∪ {m′}

end
end

end

In the search process the pattern space is traversed like a tree. Patterns
on different branches are processed independently, except that infrequent
patterns are discarded during the search process and with them complete
branches of the tree. If a global threshold for the frequency exists, the pro-
cessing of patterns on different branches is completely independent of each
other. Therefore different branches of the search tree can be processed in
parallel.

Although the search space is narrowed down efficiently by the frequent pat-
tern finder algorithm, the search process can be accelerated by executing tasks
in parallel. These enhancements have been implemented but are not shown in
the algorithms Alg. 1 and 2.

5 Details of the frequent pattern finder algorithm

5.1 Generating parent

A pattern of size i can be derived from up to i different patterns of size i− 1 by
adding one edge. In order to avoid the redundant generation of a pattern only
one defined pattern of size i−1 is allowed to generate this pattern, the generating
parent. It is defined on the basis of the canonical ordering (see Sect. 5.2) of the
adjacency matrix of the graph. The last edge defined by the top-to-bottom and
left-to-right ordering of the adjacency matrix which does not disconnect the
remaining edges of the pattern is removed. The remaining size i − 1 pattern is
the generating parent of the given size i pattern.

5.2 Canonical label

The canonical label is a unique identifier of a graph or pattern invariant to the
ordering of the vertices and edges. By comparing the canonical labels graphs can
be checked for isomorphism. The principle of the algorithm for the generation of



a canonical label is described in [4]. Some modifications are made with respect
to different properties of the input data. The method used for the generation
of a canonical label is the transformation of the adjacency matrix into a string
by concatenating it row-by-row. Since this string is dependent on the ordering
of the vertices, one needs to find an ordering which is invariant with respect to
isomorphism. A possible solution would be the generation of all possible permu-
tations of the ordering of the vertices and the use of the lexicographically largest
or smallest code as the canonical label. Because the number of permutations is
|V |! this approach is prohibitive since this number is extremely high even for
medium-size graphs. A way to reduce the number of permutations needed for
generating a canonical label is the division of the vertices into partitions with a
definite order. Now only the vertices within one partition have to be permuted,
so for the partitions containing p1, p2, ..., pm vertices the number of permutations
reduces to Πm

i=1(pi!). If it is possible to compute a fine-grain partitioning of the
vertices this number is substantially smaller than that for the permutations of
the entire set of vertices.

5.3 Iterative Partitioning

The iterative partitioning algorithm is a method to calculate a fine-grain parti-
tioning of the vertices on the basis of vertex invariants. The algorithm starts with
the computation of a initial partition identifier (partition-ID) for the vertices in-
corporating their degree. The sequence of overall degree, the out-degree and the
in-degree is used to calculate a unique identifier for every unique combination.
All different identifiers are sorted and the sorting index of a particular identifier
is used as the partition-ID. Vertices with identical partition-IDs fall into the
same partition. Subsequently the vertices are rearranged ascending according
to the numerical order of their partition-IDs, thus the vertices of one partition
follow directly on each other. The order of the vertices within one partition is
not defined.

Now the iterative process starts with the computation of a new partition-
ID for each vertex on the basis of the partition-IDs of its neighboring vertices.
According to the current order of the vertices an identifier is calculated for
each vertex by concatenating the partition-IDs of all neighboring vertices. First
the partition-IDs of neighboring vertices on outgoing edges are concatenated,
subsequently the partition-IDs of neighboring vertices on incoming edges are
used. In both cases the neighboring vertices are processed in ascending order. The
identifier is unique for a particular combination of this attributes. All different
identifiers are sorted and the sorting index of a particular identifier is used again
as the partition-ID. If new partitions have been created, the vertices are sorted
ascending according to the numerical order of their partition-ID and the cycle
iterates with the computation of new partition-IDs. Otherwise the partitioning
process is finished.

When the iterative partitioning process has finished and all vertices fall into
a unique partition nothing further has to be done. If not, the vertices of the
partitions containing more than one vertex have to be permuted within their



(a)

Pattern Frequency
F1 F2 F3

P1 3175 6 3
P2 2785 10 5
P3 2544 9 4

(b)

Pattern Frequency
F2 F1 F3

P4 12 1627 5
P5 11 1194 5
P6 11 996 5

(c)

Pattern Frequency
F3 F1 F2

P2: max(F1) 5 2785 10
P4: max(F2) 5 1627 12
P7: min(F1,F2) 5 303 5

Table 2. Patterns with highest frequency for the different concepts for frequency
counting, in (a) for concept F1, in (b) for F2 and in in (c) for F3. Since in (c) 30
patterns occur with the maximum frequency of five for concept F3, the three patterns
which have maximum respective minimum frequency for the other two concepts were
chosen for illustration. In all cases the frequencies of the patterns for the other two
concepts are also presented. The patterns are shown in Fig. 5.

partition to find the permutation which leads to the lexicographically smallest
code, which is used as the canonical label for the graph.

5.4 Maximum independent set

Whereas the frequency of a pattern in concept F1 is given by all matches of this
pattern in the target graph, for the concepts F2 and F3 the pattern frequency
is calculated after the determination of all matches by computing the maximum
independent set on the basis of their overlap graph using a fast heuristic. The
overlap graph is constructed by inserting a vertex for each match of the pattern.
An edge is inserted between a pair of vertices if their corresponding pattern
matches overlap, i.e. they share graph elements which the particular concept
does not allow for different matches counted for the frequency.

The maximum independent set S of a graph G = (V,E) is defined as the
largest subset of vertices of V such that no pair of vertices of S defines an
edge of E. Since the problem of finding the maximum independent set is NP-
complete [1], a heuristic is used to approximate the exact result for performance
reasons. A widely used heuristic is a greedy algorithm which selects a vertex of
minimum degree, adds it to the independent set, deletes this vertex and all of
its neighbors. This process is repeated until the graph becomes empty.

6 Application

For the application of our algorithm we took a data set of interactions of tran-
scription factors in Saccharomyces cerevisiae. It was published in [6] and is avail-
able under http://jura.wi.mit.edu/young public/regulatory network/. It
comprises 106 transcriptional regulators with 108 interactions, where an inter-
action stands for the binding of one factor to the promoter of the gene of a
regulated factor and is therefore directed. Autoregulation of a factor by binding
to its own promotor exists.
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Fig. 5. The frequent patterns of Table 2.

Searching for all patterns of size 6 resulted in 1811 non-isomorphic patterns
covering a broad range of frequency. Tab. 2 lists the patterns with highest fre-
quency for the different concepts of frequency counting. Remarkably, the values
for F1 in comparison to F2 and F3 are up to two orders of magnitude higher for
frequent patterns. Comparing the values for the different concepts shows that a
high frequency of a specific pattern for one concept does not necessarily imply
a high frequency for another concept.

If the analysis of a particular network is focused on revealing all possible
occurrences of a specific pattern, frequency concept F1 provides the desired
information. Frequency concepts F2 and F3 are appropriate for example if the
maximum number of instances of a particular pattern which can be ”active”
at the same time is demanded or if non-overlapping matches for visualisation
purposes are of interest. The frequency of a pattern alone is not sufficient for
identifying functional motifs. If a frequent pattern has a functional role in the
network has to be analysed further. Therefore this step is only a starting point
which generates interesting hypotheses for further studies.

7 Discussion

This paper discussed two topics related to frequent pattern mining: 1) three
different concepts for the determination of pattern frequency and 2) a flexible
algorithm to find frequent patterns in directed graphs. This algorithm is easily
extendible. Analysing networks and finding interesting patterns is not only im-
portant in biology as shown, but has applications in other fields of science such as
the toxicology or carcinogenicity of chemical substances [9] and the classification
of sequential logic circuits [7].

The algorithm considers only the topology of the network, but does not
take additional information about the involved elements and relations into ac-
count. This is an abstraction of the functional aspects of the biological network,
however it keeps the major relationships of the elements forming the network.
The incorporation of more detailed information into the search is planned for



further developments. As the parallel version of the algorithm has just been im-
plemented, the analysis of its scalability and improvements are the next steps.
Finally we plan to extend the visual analysis of the patterns in the target network
by developing specific graph layout methods for this task.
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